Bayer–Macrì decomposition on Bridgeland moduli spaces over surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birational Geometry of Moduli Spaces of Sheaves and Bridgeland Stability

Moduli spaces of sheaves and Hilbert schemes of points have experienced a recent resurgence in interest in the past several years, due largely to new techniques arising from Bridgeland stability conditions and derived category methods. In particular, classical questions about the birational geometry of these spaces can be answered by using new tools such as the positivity lemma of Bayer and Mac...

متن کامل

Moduli of Bridgeland semistable objects on P

Let X be a smooth projective surface, Coh(X) the abelian category of coherent sheaves on X, and D(X) the bounded derived category of coherent sheaves on X. We study the Bridgeland stability conditions on D(X) and see that for some stability conditions on D(X) the moduli spaces of (semi)stable objects in D(X) coincide with the moduli spaces of (semi)stable coherent sheaves, while for some other ...

متن کامل

Rank One Bridgeland Stable Moduli Spaces on a Principally Polarized Abelian Surface

We compute moduli spaces of Bridgeland stable objects on an irreducible principally polarized complex abelian surface (T, `) corresponding to twisted ideal sheaves. We use Fourier-Mukai techniques to extend the ideas of Arcara and Bertram to express wall-crossings as Mukai flops and show that the moduli spaces are projective.

متن کامل

Symplectic Geometry on Moduli Spaces of Holomorphic Bundles over Complex Surfaces

We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a “complex analogue of the holonomy” of a con...

متن کامل

Proceedings of the Arnoldfest SYMPLECTIC GEOMETRY ON MODULI SPACES OF HOLOMORPHIC BUNDLES OVER COMPLEX SURFACES

We give a comparative description of the Poisson structures on the moduli spaces of at connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classiied by restrictions of the bundles to certain divisors. This can be regarded as xing a \complex analogue of the holonomy" of a connecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 2018

ISSN: 2156-2261

DOI: 10.1215/21562261-2017-0031